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Introduction

Simulations

Parcellations

Non-Negative Dual Regression

In-vivo Results
During the neonatal period, the brain grows and develops rapidly, which can make it challenging to ensure correspondence between templates at
different time points. Previously, we presented a data-driven framework to map white matter bundles and their corresponding grey matter
termination points from neonatal dMRI data, without the need for pre-defined regions of interest [1]. Here, we validate our non-negative method
using simulated data, and extend the framework to generate cortical parcellation schemes. We also develop a method for non-negative dual
regression to obtain subject-specific connectivity maps.

Using MRI data from 323 term-age subjects from the developing Human Connectome Project [2,3], we performed probabilistic tractography to 
generate grey-matter to whole brain connectivity matrices. Applying non-negative matrix factorization (NMF) [4] to the group-averaged matrix 
yields a set of grey matter components and their corresponding white matter connections. 

Methods

We tested the framework on simulated data to observe the results on a system where we know the ground truth. Sources S were modelled as
log-beta distributions, based on real data. The simulated data were calculated as X = AS, and Gaussian noise was applied to the data via a logit
transform, to maintain non-negativity. We compared the performance of NMF with ICA, another matrix decomposition technique that had been
used in this context [5], looking at the effect of altering the regularization parameter, ⍺, and increasing the variance of the noise, σ2.

Grey matter components were used to parcellate the cortex, using a “winner-takes-all” approach. We performed parcellations for each half of
the cohort, and measured the spatial overlap using Dice scores. We also assessed how well the parcellation clusters similarly connected vertices
using the Silhouette Score.
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Parcellations across the split-half
were more similar than random
Voronoi parcellations

The data-driven parcellation effectively
groups similar vertices

Increasing α increases sparsity, but also increases the
reconstruction error. The NMF decomposition breaks
down for high regularisation. α = 0.1 is a good middle
ground, balancing reconstruction accuracy and sparsity.

Reconstruction error increases with noise, whereas source
correlation and component sparsity decrease. The
decompositions are robust to the levels of noise we would expect
in real data (σ2 = 0.05). NMF components correlate more strongly
with the true signals, and are more sparse than ICA components.
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Components correspond to white matter tracts:
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NMF components are robust in a split-half
analysis of the cohort. Correlation scores
across the split-half are similar to ICA.
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Dual regression can be used to generate subject-level representations of group components and mixing matrices [6]. The standard approach
involves taking the pseudoinverse of the connectivity matrix, which introduces negative values into the components and their weights. Instead,
we have developed a “non-negative dual regression” technique for back projecting NMF results, using non-negative least squares (NNLS).

Dual regressed grey matter
components can be used to
generate subject specific
parcellations

Reconstruction error =
Σ(X – AS)2, information
lost through the
decomposition

The average correllation
value between best-
matched sources and
components
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