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abstract

We used independent component analysis (ICA) and non-negative matrix factorisation (NMF) [6], as two alternatives for the decomposition. NMF constrains both the 
mixing matrix and the components to contain positive values, so is a more natural fit for our inherently non-negative structural data. For the matrix decomposition ! = #$, the 

NMF objective function is % = &
' ! −#$ ) + 0.1 # .& + 0.1 $ .&, where / ) is the Frobenius norm and / .& is the L1 norm, used to increase sparsity. Promoting 

sparsity also effectively promotes independence, so the NMF components resembled ICA ones, with the positivity-constraint inherently considered.

Why use data-driven methods?
Standard tractography protocols rely on the delineation of ROIs relative to a template [1]. This is not straightforward to implement in neonatal subjects, due to the rapid brain 
changes in the first weeks of development. As an alternative, we propose here data-driven methods to identify white matter pathways and their corresponding grey matter 
networks from whole-brain connectivity matrices [2]. This approach is more immune to the morphological changes that occur during early development and also paves the 
way for multi-modal data fusion in connectivity analysis (for instance using diffusion and functional MRI jointly to infer connectivity).

We designed a data-driven framework for the simultaneous extraction of white matter bundles and their corresponding grey matter networks from diffusion MRI data. We first  
performed probabilistic tractography on data from 36 neonates, from the first release of the developing Human Connectome Project (dHCP) [3,4], to obtain a grey matter to 
whole brain connectivity matrix. This was decomposed into components sharing similar connectivity profiles, following the idea in [2].
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To obtain subject-specific representations of the components, we performed dual 
regression [5]. Component scores were calculated as the correlation between the 
subject-specific components and their group-level equivalent. The scores of two grey 
matter components increased significantly with subjects’ age at scan, indicating a 
reduction in variability with age, as the white matter connections become better 
established. 

The Boruta algorithm [7] shuffles the feature values to generate “shadow features”. It 
then trains a random forest classifier and retains features that perform significantly 
better than the shadow features over a number of iterations. NMF features selected:

left & right 
arcuate 

fasciculus

left 
hippocampal 

cingulum

left & right 
superior 

longitudinal 
fasciculus

right 
cingulum

left & right 
fornix

left cortico-
spinal tract

Methods

Results

Structural components resemble resting-state functional 
components

Component scores correlate with age

NMF improves interpretability, compared to ICA

dMRI
component

fMRI 
component

Functional components 
were obtained using ICA 

[8] on resting-state 
functional MRI of subjects 

from the same cohort

N
W

G
B 

se
ed

s

N
W

G
B 

se
ed

s

C
 c

om
po

ne
nt

s

M WM locations

negative positive0

×


